

ST6260Bx3 ST6265Bx3

8-BIT HCMOS MCUs WITH A.D.C, EEPROM & AUTO-RELOAD TIMER WITH AUTOMOTIVE TEMPERATURE RANGE

- 3.0 to 6.0V Supply Operating Range
- 4 MHz Maximum Clock Frequency
- -40 to +125°C Operating Temperature Range
- Run, Wait & Stop Modes
- 5 different interrupt vectors
- Look-up table capability in ROM
- User ROM: 3884 bytes
- Data ROM: User selectable size
- (in program ROM) Data RAM: 128 bytes
- EEPROM:
- 128 bytes
- PDIP20, PSO20 (ST6260B) packages
- PDIP28, PSO28 (ST6265B) packages
- 13/21 fully software programmable I/O as:
 - Input with pull-up resistor
 - Input without pull-up resistor
 - Input with interrupt generation
 - Open-drain or push-pull outputs
 - Analog Inputs
- 6/8 I/O lines can sink up to 15mA for direct LED or TRIAC driving
- 8 bit counter with a 7-bit programmable prescaler (TIMER 1)
- 8 bit Auto-reload Timer with 7-bit programmable prescaler (AR TIMER)
- Digital Watchdog
- 8 bit A/D Converter with up to 7 (ST6260B) and up to 13 (ST6265B) analog inputs
- 8 bit Synchronous Peripheral Interface (SPI)
- On-chip clock oscillator driven by Quartz Crystal, Ceramic resonator or RC network
- User configurable Power-on Reset
- One external not maskable interrupt
- 9 powerful addressing modes
- The development tool of the ST626xB microcontrollers consists of the ST626xB-EMU emulation and development system connected via a standard RS232 serial line to an MS-DOS Personal Computer

June 1995

This is Preliminary Data from SGS-THOMSON. Details are subject to change without notice.

INTRODUCTION

ROM devices of the ST626XB family are available in extended Automotive temperature range -40°, 125° (Suffix 3). All the functionnalities remain the same as in Consumer (Suffix 1) and Industrial (Suffix 6) temperature ranges while electrical characteristics are redefined.

No OTP device are available for this range of temperature.

THE READER IS ASKED TO REFER TO THE DATASHEET OF ST6260B AND ST6265B FOR COMPLETE FUNCTIONNAL DESCRIPTION.

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

This product contains devices to protect the inputs against damage due to high static voltages, however it is advised to take normal precaution to avoid application of any voltage higher than maximum rated voltages. For proper operation it is recommended that V_I and V_O must be higher than V_{SS} and smaller V_{DD} . Reliability is enhanced if unused inputs are connected to an appropriated logic voltage level $(V_{DD} \text{ or } V_{SS})$.

Power Considerations. The average chip-junction temperature, Tj, in Celsius can be obtained from :

$Tj = T_A + PD x RthJA$

- Where $:T_A =$ Ambient Temperature. RthJA = Package thermal resistance (junction-to ambient).
 - PD = Pint + Pport.
 - Pint = $I_{DD} \times V_{DD}$ (chip internal power).
 - Pport = Port power dissipation (determinated by the user).

Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage	-0.3 to 7.0	V
VI	Input Voltage	V_{SS} - 0.3 to V_{DD} + 0.3 ⁽¹⁾	V
Vo	Output Voltage	V_{SS} - 0.3 to V_{DD} + 0.3 ⁽¹⁾	V
lo	Current Drain per Pin Excluding VDD, VSS	10	mA
I _{INJ+}	Pin Injection current (positive), All I/O, V_{DD} = 4.5V	+5	mA
I _{INJ-}	Pin Injection current (negative), All I/O, VDD = 4.5V	-5	mA
IV _{DD}	Total Current into V _{DD} (source)	50	mA
IV _{SS}	Total Current out of V _{SS} (sink)	50 ⁽²⁾	mA
Tj	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-60 to 150	°C

Notes :

- Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- (1) Within these limits, clamping diodes are guaranteed to be not conductive. Voltages outside these limits are authorised as long as injection current is kept within the specification.

- (2) The total current through ports A and B combined may not exceed 50 mA. The total current through port C may not exceed 50 mA. If the application is designed with care and observing the limits stated above, total current may reach 100 mA.

THERMAL CHARACTERISTIC

Symbol	Parameter	Test Conditions		Unit		
Gymbol	i arameter		Min.	Тур.	Max.	Onit
		PDIP28			55	
RthJA	Thermal Resistance	PDIP20			60	°C/W
		PSO28			75	-,
		PSO20			80	

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Test Conditions	Value			Test Conditions Value	Unit
			Min.	Тур.	Max.	Onic	
T _A	Operating Temperature	3 Suffix Version	-40		125	°C	
V _{DD} Operating Supply Voltage		fosc= 2MHz f _{INT} = 2MHz	3.0		6.0	V	
		f _{OSC} = 4MHz f _{INT} = 4MHz	4.0		6.0	V	
f _{INT}	Internal Frequency ⁽³⁾	V _{DD} = 3V V _{DD} = 4.5V	0 0		2.0 4.0	MHz MHz	
I _{INJ+}	Pin Injection Current (positive) Digital Input ⁽¹⁾ Analog Inputs ⁽²⁾	V _{DD} = 4.5 to 5.5V			+5	mA	
I _{INJ-}	Pin Injection Current (negative) Digital Input ⁽¹⁾ Analog Inputs	V _{DD} = 4.5 to 5.5V			-5	mA	

Notes :

1.

Otes : A current of 5mA can be forced on each pin of the digital section without affecting the functional behaviour of the device. For a positive current injected into one pin, a part of this current (~ 10%) can be expected to flow from the neighbouring pins. If a total current of +1 mA is flowing into the single analog channel or if the total current flowing into all the analog inputs is of 1mA, all the resulting conversions are shifted by +1 LSB. If a total positive current is flowing into the single analog channel or if the total current flowing into all the analog inputs is of 5mA, all the resulting conversions are shifted by +1 LSB. If a total positive current is flowing into the single analog channel or if the total current flowing into all the analog inputs is of 5mA, all the resulting conversions are shifted by +2 LSB. An internal frequency above 1MHz is recommended for reliable A/D results. 2.

3.

Maximum Operating FREQUENCY (Fmax) Versus SUPPLY VOLTAGEVDD

The shaded area is outside the ST6260B/65B operating range, device functionality is not guaranteed. The striped area is guaranteed only with the LOW VOLTAGE option.

DC ELECTRICAL CHARACTERISTICS

(TA=-40 to +125°C unless otherwise specified)

Symbol	Parameter	Test Condition s	Value			Unit
			Min.	Тур.	Max.	
Vil	Input Low Level Voltage All inputs				V _{DD} x 0.3	V
V _{IH}	Input High Level Voltage All inputs		V _{DD} x 0.7			V
V _{Hys}	Hysteresis Voltage ⁽⁴⁾ All Inputs	V _{DD} =5V V _{DD} =3V	0.2 0.2			V
V _{OL}	Low Level Output Voltage Port A, C	V_{DD} =4.5V I _{OL} = +1.6mA V_{DD} =4.5V I _{OL} = +5.0mA V_{DD} =3.0V I _{OL} = +0.7mA			0.4 1.3 0.4	V
Vol	Low Level Output Voltage Port B	$ V_{DD} = 4.5 V I_{OL} = +1.6 mA \\ V_{DD} = 4.5 V I_{OL} = +15.0 mA \\ V_{DD} = 3.0 V I_{OL} = +0.7 mA $			0.4 1.3 0.4	V
Vон	High Level Output Voltage Port A, B, C	$V_{DD}{=}4.5V I_{OL}{=} {-}1.6mA \\ V_{DD}{=}4.5V I_{OL}{=} {-}5.0mA \\ V_{DD}{=}3.0V I_{OL}{=} {-}0.7mA$	4.1 3.5 2.6			V
IPU	Input Pull-up Current Input Mode with Pull-up Port A, B, C, NMI	$V_{IN} = V_{SS}, V_{DD} = 2.5-6V$			100	μΑ
lıL lıH	Input Leakage Current(1)	$V_{IN} = V_{SS}$ $V_{IN} = V_{DD}$			1.0	μΑ
	Supply Current in RESET Mode	V _{RESET} =V _{SS} f _{OSC} =4MHz			3.5	mA
	Supply Current in RUN Mode ⁽²⁾	V _{DD} =5.0V f _{INT} =4MHz V _{DD} =3.0V f _{INT} =4MHz			6.6 TBD	mA
I _{DD}	Supply Current in WAIT Mode ⁽³⁾	V _{DD} =5.0V f _{INT} =4MHz V _{DD} =3.0V f _{INT} =4MHz			1.50 TBD	mA
	Standard STOP Mode Consumption Option ⁽³⁾	I _{LOAD} =0mA V _{DD} =6.0V; 70°C V _{DD} =6.0V; 125°C			10 20	μΑ
	Low STOP Mode Consumption Option ⁽³⁾	I _{LOAD} =0mA V _{DD} =3.0V; 70°C V _{DD} =3.0V; 125°C			2 4	μΑ

Notes:
 Only when pull-ups are not inserted
 All peripherals running
 EEPROM and A/D Converter in Stand-by
 Hysteresis voltage between switching levels

AC ELECTRICAL CHARACTERISTICS

(TA=-40 to +125°C unless otherwise specified)

Symbol	Parameter	Test Condition s		Value		Unit
	i arameter	rest conditions	Min.	Тур.	Max.	Onic
f _{OSC}	Oscillator Frequency	V _{DD} = 3.0V V _{DD} = 4.5V			2 4	MHz
t _{SU}	Oscillator Start-up Time at Power On ⁽²⁾	Ceramic Resonator $C_{L1} = C_{L2} = 22pF$		5	100	
teue	Oscillator STOP mode	4MHz Ceramic Resonator CL1=CL₂=22pF		0.2	100	ms
Recovery Time ⁽²⁾		4MHz Quartz CL1=C∟2=22pF		10	100	
t _{REC}	Supply Recovery Time (1)		100			
T _{WR}	Minimum Pulse Width (V _{DD} = 5V) RESET pin NMI pin		100 100			ns
T _{WEE}	EEPROM Write Time	$T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$ $T_A = 125^{\circ}C$		5 10 20	10 20 30	ms
Endurance	EEPROM WRITE/ERASE Cycle	Q _A L _{OT} Acceptance	300,000			cycles
Retention	EEPROM Data Retention	$T_A = 55^{\circ}C$	10			years
CIN	Input Capacitance	All Inputs Pins			10	pF
C _{OUT}	Output Capacitance	All Outputs Pins			10	pF

Note:

Period for which V_{DD} has to be connected at 0V to allow internal Reset function at next power-up.
 See Figure 59. This value is highly dependent on the Ceramic Resonator or Quartz Crystal used in the application.

Figure 1. Power On Reset

I/O PORT CHARACTERISTICS

(TA=-40 to +125°C unless otherwise specified)

Symbol	Parameter	Test Conditions		Value		Unit
Gymbol	i arameter			Тур.	Max.	Onic
VIL	Input Low Level Voltage	I/O Pins			0.3x V _{DD}	V
V _{IH}	Input High Level Voltage	I/O Pins	$0.7 x V_{DD}$			V
Vol	Low Level Output Voltage				0.1 0.8 0.8 1.3	V
V _{OH}	High Level Output Voltage	I _{OH} = – 10μA I _{OH} = – 3mA, V _{DD} = 5.0V I _{OH} = – 1mA, V _{DD} = 3.0V	V _{DD} -0.1 3.5 2.0			V
հւ հո	Input Leakage Current I/O Pins (pull-up resistor off)	$Vin=V_{DD} \text{ or } V_{SS}$ $V_{DD}= 3.0V$ $V_{DD}= 5.5V$		0.1 0.1	1.0 1.0	μΑ
R _{PU}	Pull-up Resistor	Vin= 0V; All I/O Pins	50	100	200	KΩ

SPI CHARACTERISTICS

(TA=-40 to +125°C unless otherwise specified)

Symbol	Parameter	Test Conditions		Value		Unit
Cymber	i di di lictor		Min.	Тур.	Max.	Unit
f _{CL}	Clock Frequency at SCK				500	kHz
t _{SV}	Data Set up time on Sin			TBD		
tн	Data hold time on Sin			TBD		
t _{TS}	Delay Transmission started on Sin	4MHz	0	Note 1		μs

Note 1. Minimum time 0µs Maximum time 1 instruction cycle

TIMER1 CHARACTERISTICS

(TA=-40 to +125°C unless otherwise specified)

Symbol	Parameter Test Conditions			Unit		
• • • • • •			Min.	Тур.	Max.	•••••
tres	Resolution		12 f _{INT}			s
fın	Input Frequency on TIM1 Pin ⁽¹⁾				f _{INT} 8	MHz
tw	Pulse Width at TIM1 Pin ⁽¹⁾	$V_{DD} = 3.0V$ $V_{DD} = 4.5V$ $V_{DD} = 5.5V$	1 250 250			μs ns ns

Note : 1. Not available for ST6260B

AR TIMER CHARACTERISTICS

(TA=-40 to +125°C unless otherwise specified)

Symbol	Parameter	Parameter Test Conditions		Value			
Cymbol			Min.	Тур.	Max.		
t _{RES}	Resolution		1 f _{INT}			s	
f	Input Frequency on	STOP Mode			2 f=	MHz	
IARin	ARTIMin pin	RUN and WAIT Modes			8	MHz	
t _W	Pulse Width at ARTIMin Pin	$V_{DD} = 3.0V$ $V_{DD} = 4.5V$ $V_{DD} = 5.5V$	250 250 250			ns ns ns	

A/D CONVERTER CHARACTERISTICS

(TA=-40 to +125°C unless otherwise specified)

Symbol	Parameter	Test Conditions	Value		Unit	
			Min.	Тур.	Max.	
Res	Resolution			8		Bit
Атот	Total Accuracy ^{(1) (2)}	f _{OSC} > 1.2MHz			±2	I SB
		f _{OSC} > 32kHz	٦	Fobe define	d	
t _C	Conversion Time	fOSC = 4MHz		140		μs
V _{AN}	Conversion Range		V _{SS}		V _{DD}	V
ZIR	Zero Input Reading	Conversion result when $V_{IN} = V_{SS}$	00			Hex
FSR	Full Scale Reading	Conversion result when $V_{IN} = V_{DD}$			FF	Hex
ADI	Analog Input Current During Conversion	V _{DD} = 4.5V			1.0	μA
AC _{IN} ⁽³⁾	Analog Input Capacitance			2	5	pF
ASI	Analog Source Impedance	Analog Channel switched just before conversion start ⁽⁴⁾			30	kΩ

Notes:

Noise at V_{DD}, V_{SS} <10mV
 With oscillator frequencies less than 1MHz, the A/D Converter accuracy is decreased.

Excluding Pad Capacitance.
 ASI can be increased as long as the load of the A/D Converter input capacitor is ensured before conversion start.

READ PROTECTION FUSE

If the ROM READOUT PROTECTION option is selected as enabled, the following waveform must be applied at the V_{PP} pin for the fuse to be blown:

The following circuit can be used for this purpose:

Note: ZPD15 is used for overvoltage protection

ORDERING INFORMATION

The following chapter deals with the procedure for transfer customer codes to SGS-THOMSON.

Communication of the customer code. Customer code is made up of the ROM contents and the list of the selected mask options. The ROM contents are to be sent on one diskette with the hexadecimal file generated by the development tool. All unused bytes must be set to FFh.

The selected mask options are communicated to SGS-THOMSON using the correctly filled OP-TION LIST appended.

Listing Generation & Verification. When SGS-THOMSON receives the diskette, a computer listing is generated from it. This listing refers exactly to the mask that will be used to produce the microcontroller. Then the listing is returned to the customer that must thoroughly check, complete, sign and return it to SGS-THOMSON. The signed listing constitutes a part of the contractual agreement for the creation of the customer mask. SGS-THOMSON sales organization will provide detailed information on contractual points.

Table 1. ROM Memory Map

Device Address	Description
0000h-007Fh	Reserved ⁽¹⁾
0080h-0F9Fh	User ROM
0FA0h-0FEFh	Reserved ⁽¹⁾
0FF0h-0FF7h	Interrupt Vectors
0FF8h-0FFBh	Reserved ⁽¹⁾
0FFCh-0FFDh	NMI Interrupt Vector
0FFEh-0FFFh	Reset Vector

Notes :

1. Reserved Areas should be filled with FFh

ORDERING INFORMATION TABLE

Sales Type	ROM x8	I/O	Temperature Range	Package
ST6260BB3/XXX	4K Bytes	13	-40 to +125°C	PDIP20
ST6260BM3/XXX	4K Bytes	13	-40 to +125°C	PSO20
ST6265BB3/XXX	4K Bytes	21	-40 to +125°C	PDIP28
ST6265BM3/XXX	4K Bytes	21	-40 to +125°C	PSO28

Note: /XXX is a 2-3 alphanumeric character code added to the generic sales type on receipt of a ROM code and valid options.

ST6260B, ST6265B MICROCONTROLLER OPTION LIST		
Customer		
Address		
Contact Phone No Reference		
SGS-THOMSON Microelectroni		ics references
Device:		[] ST6260B, [] ST6265B
Package:		[] Dual in Line Plastic [] Small Outline Plastic
In this case, select conditioning		ning
		[] Standard (Stick) [] Tape & Reel
Temperature Range:		[] 0° C to + 70°C [] - 40°C to + 85°C [] - 40°C to + 125°C
Special Marking:		[]No []Yes ""
Authorized characters are letters, digit Maximum character count DIP20 SO20		rs, digits, '.', '–', '/' and spaces only. DIP20 - DIP28: 10 SO20 - SO28: 8.
Oscillator Source Selection :		 Crystal Quartz/Ceramic Resonnator RC Network
Power on Reset Delay:] 32768 cycles delay[] 2048 cycles delay
Watchdog Selection:		[] Software Activation (STOP mode available)[] Hardware Activation (no STOP mode)
External STOP Mode Control:		[] Enabled [] Disabled
ROM Readout Protection:		[] Disabled
For Enabled option, contact your local SGS-THOMSON office.		
STOP Mode Consumption:		[] Standard (10µA max)
For Low STOF	P Mode Consump	otion option contact your local SGS-THOMSON office.
Supply Operating Range:		[] Standard Range: 3.0V to 6.0V
Notes		
Signature		
Date		

Notes:

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - All rights reserved.

Purchase of I²C Components by SGS-THOMSON Microelectronics conveys a license under the Philips I²C Patent. Rights to use these components in an I²C system is granted provided that the system conforms to the I²C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics Group of Companies

Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

